
MSOR Connections Vol 12 No 2 Summer 2012

�

Background

I joined the MSOR Network in September 2000 having just finished a PhD in
Mathematics at the University of Bath. Until September 2011 I devoted about half
my time to the Network and undertook a number of learning and teaching related
projects. These include a continuous development of automatic assessment using
computer algebra. The work on automatic assessment contains quite a variety of
aspects, and this articles concentrates on one of these.

One of the challenges of automatic assessment is how to enter a mathematical
expression into a machine. This is a fundamental computer interface problem. There
are a number of options, perhaps the most basic being a typed linear syntax, so that

1
1+3x2 might be entered as 1/(1+3*x^2). Another common approach is to build the
components by dragging them to assemble the expression in a visual way. A third
alternative is a hybrid, where the two dimensional expression builds up as you type.
This combines the simplicity and speed of typing with the immediate visual appeal
of two-dimensional traditional notation. For example, the NUMBAS system uses this
approach, http://www.ncl.ac.uk/maths/numbas/

I wanted to provide a drag-and-drop interface to the computer aided assessment
system STACK, [8, 7]. However, I could not find a suitable freely available, i.e. open
source, equation editor. To address this need, during 2006-2007 I ran a Computer
Science Final Year Project at the University of Birmingham. The goal of the project was
“to design and create an application that enables a user to easily enter mathematics
into a computer. The interface will allow users to pick desired mathematical
components by clicking buttons or dragging and dropping onto a workspace in order
to generate mathematical expressions.” A potential secondary goal of this project was
to further develop the application into a fully-featured and useful equation editor tool
which could be incorporated into the STACK computer aided assessment system.

One of the difficulties of running this project is that it has been done before. Another
is that it looks trivial. However, I am unconcerned about the first of these difficulties:
mathematics education is the art of reinventing the wheel. With this point of view,
it makes an interesting student project. The second is more problematic. One of the
significant lessons I have learned from automatic assessment is that to automate a
process you have to understand it intimately. Mathematical notation looks simple,
indeed it has evolved precisely that way. However, in the next section I want to
provide some examples of why mathematical notation, and hence the design of any
mathematical interface, is an interesting and challenging design problem.

Chris Sangwin

The DragMath equation editor

Chris Sangwin
Maths Stats and OR Network
University of Birmingham
C.J.Sangwin@bham.ac.uk

MSOR Connections Vol 12 No 2 Summer 2012

�

Why notation is interesting

In this section I would at least like to illustrate why
mathematical notation is non-trivial. Mathematical notation
and its meaning is something we perhaps take for granted.

Examples of the power of a well contrived notation to
condense into small space, a meaning which would in
ordinary language require several lines or even pages,
can hardly have escaped the notice of most of my
readers. [1, pg 331]

Mathematical notation has evolved over a long period of
time and takes advantage of a rich set of special symbols,
together with their relative size and position on a two
dimensional page. The two most basic ways symbols are
combined are

1. juxtaposition, by placing them next to each other e.g. 2x,

2. grouping, by combining many symbols and treating
them as a single unit.

The traditional contemporary use, of both of these, result
in some significant ambiguities. For example, juxtaposition
sometimes means multiplication, as in 2x, but it sometimes
means addition, as in 2½ and at other times it could be
function application, as in sin x. Parentheses are often
used for grouping, as in 2(x+1), for function application
cos(nπ) (which is arguably also grouping), for denoting
real intervals, e.g. (−1, 1) and other specialist uses. Relative
size and position, e.g. superscript, provides ambiguity
between powers and other function application: compare
sin2(x) which is often interpreted as the square of sin(x) (not
sin(sin(x))) whereas sin−1(x) is the inverse function (not the
reciprocal). There are also cultural differences in notation,
and interesting historical developments, see [5] and [2].

If you have serious doubts about how powerful notation
can be, try changing something. For example, in [4]
Brown proposed a change to the notation for logarithms,
motivated by computer notation for exponentiation ab as
a-b, or perhaps more commonly now a^b. She suggested
that the logarithm of b to the base a, sometimes written
as loga(b), could be written a.b. We generally don’t have
a keyboard symbol ., so instead we could type a_b, and
display this as ab. Then the natural logarithm becomes
simply ex. In this new notation, which of the following are
correct laws of logarithms?

aax = aax = x,
ab×c = ab + ac,
abc = (ab) × c,
(ab) × (ba) = 1,
(ab) = (ac) × (cb).

‘Correct’, at least in the elementary sense. Normally we
gloss over issues of branch cuts and complex numbers
when introducing logarithms to students. In what sense
are algebraic identities like this ‘correct’? One of the goals
of DragMath was to let the user build up expressions, but

internally to try to capture the intended meaning in an
unobtrusive way. In parallel to the DragMath project, this
interest in notation motivated us to investigate linear input
syntax for STACK and CAA in general, e.g. [9] where more of
these issues are considered.

What is DragMath?

The project ran in 2006-2007, and I was fortunate in
attracting Alex Billingsley as the project student, see [3]. As is
appropriate for a project, exemplars of each ‘type’ of operator
were added. E.g. Alex added some trigonometrical functions,
but not the full list. Subsequently I paid Alex from my
research funds to add further features, to fill out the functions
list, and to make changes which I wanted, but which were
not relevant to Alex’s project. The final result was DragMath.
See www.dragmath.bham.ac.uk. DragMath is a ‘drag and
drop’ equation editor. It is a Java applet which can run within
a web browser. The editor lets users build up mathematical
expressions in a traditional two dimensional way, and then
output the results in a correctly formed syntax.

DragMath is based on the idea of templates for each
operator or function. Templates can be inserted which
consist of the traditional notation and layout for that
particular operator/function and also blank boxes. The
number of boxes depends on the number of arguments the
operator/function takes. An example is shown in the right of
Fig 1. Here the two-dimensional fraction operator has boxes
on the top and bottom which do not yet have any contents.
On the left, the summation operator has four arguments
supplied, the variable name, the upper and lower limits and
the summand.

To insert a template from the toolbar you can point and click
or drag and drop onto the workspace area, or an existing
text box. Notice that templates are grouped in tabs, which
is a common form of user interface. Ultimately, DragMath
incorporated a simple parser (using 3rd party code) so that
typed expressions, e.g. 1+x^2 would also be correctly
interpreted. This gave the interface flexibility and enabled
more experienced users to type when this is more efficient.
Basic editing options are supplied to edit the expression,

Fig 1 – The DragMath equation editor

The DragMath equation editor – Chris Sangwin

MSOR Connections Vol 12 No 2 Summer 2012

�

including select, copy, paste, delete, redo, undo etc.
Deciding on how ‘select’ should work is also a non-trivial
task. Further comments on this problem are given by [6].

A key design feature of DragMath is the ability to configure
the applet without having to recompile the code. This
extends in three major ways.

There are various parameters that can be set inside the
<APPLET> tag, to change particular options within
the applet.

The user can write their own language versions.

The user can write their own output format.

As might be expected, there are a number of applet
parameters, including loading the applet with an initial
expression. This is crucial if we return to an expression to
edit it later. We can also show and hide menus, including
various tabs.

It is possible to convert the expression to almost any format
desired by creating an XML file with the correct syntax
data in it. We will discuss this in more detail below. Note,
that users can adapt the format of the output without
recompiling the applet. DragMath is supplied with seven
output format files including LaTeX, MathML, Maxima and
Maple syntax.

Adding a new mathematical operator or function requires
developer access. Designing a platform in which this
was abstracted into an external configuration file was
unnecessarily complicated for our purposes. However, we
have received a number of requests to add functionality.
In particular, the following recent request from chemists is
not unique.

I find the tool super user friendly to create mathML but
there is one simple thing that is really holding us up.

We can’t figure out how to write something like H2O.

What is the sequence that we have to do to enter a letter, a
superscript number and another letter?

In DragMath we could certainly add functionality to do this,
but what does H2O actually mean? Perhaps we need some
kind of chemical bond operator, because these juxtaposed
symbols certainly have some meaning. DragMath seeks to
encode the meaning internally. Once this is done we can
output a representation of the expression in many formats,
not just a presentational form such as H2O.

Design of DragMath

Internally, DragMath uses an abstract expression tree (AET) to
represent mathematical expressions. Operators are placed
on nodes, and the operands are on the leaves. The operands
could also be an AET or an atomic expression, such as a
number or abstract symbol for a variable. DragMath needs
to deal both with well-formed and ill-formed trees. As

•

•

•

the user builds up an expression in stages, as in Fig 1, the
expression is usually incomplete.

Each operator belongs to a particular group, e.g. unary
operators take one argument, as in sin(x) or n!. Binary
operators have two arguments, although associative
binary operators are normally represented as so-called
n-ary operators. As a specific example addition is strictly
speaking a binary operator, although we traditionally write
expressions such as a + b + c. Rather than adhere to a strict
binary operator, which would force the user to choose
between (a + b)+ c and a +(b + c) DragMath quietly flattens
such expressions to give a + b + c. If the user really wants
a +(b + c) then the last two terms can be explicitly grouped
together. Some CAS, such as Maxima, have an internal
representation which permit such n-ary operators, using a
syntax such as

“+”(a,b,c)

Here, the function + can accept an arbitrary number
of arguments.

One of the key design features is a mapping of the abstract
expression tree onto a required output format. Take the
expression ya

bf (x)dx. In LaTeX this might be typeset using

$\int_a^b f(x) \mathrm{d}x$

In Maple

int(f(x),x=a..b);

and in Maxima

int(f(x),x,a,b);

The MathML version is too horrible to reproduce here, but
the principle is clear. In some cases, the orders of arguments
changes. DragMath loads an XML file which encapsulates
the rules for the intended output format. It then applies
these rules to the expression. Hence, if a user wishes to
modify the rules they can do so without changing the
applet itself. Indeed, it is possible to create whole new
output formats.

One of the difficulties Alex had in presenting his work
was the simplicity of his final design and the applet he
implemented masked the sophisticated data structure and
the flexibility of the output mechanism.

Uptake and use

When making choices about what to spend time doing, it
is not clear what will ultimately be most valuable or will be
used by others. DragMath is a case in point. Originally it was
designed to provide a drag-and-drop editor for the STACK
computer aided assessment system, but it was always our
intention that this should have a separate project identity.
Since its release in the summer of 2007, DragMath has
become very widely used in a variety of other projects. It is
likely that we do not know about all of these.

The DragMath equation editor – Chris Sangwin

MSOR Connections Vol 12 No 2 Summer 2012

�

There are a number of reasons why DragMath has been
widely used. Firstly there was a need for this tool, which
was not satisfied by any other software. Alex’s code has
proved to be very reliable, and made the job of equation
editor appear simple. Part of the design was to ensure it was
possible to integrate DragMath into STACK, but we made
sure this was general and could be used elsewhere.

Perhaps the most important reason why DragMath has
been widely used is that we made it easy for others to adapt
DragMath. In particular, it is not necessary to recompile the
applet to change the language. Others have contributed
translations of DragMath into: Catalan, Czech, Dutch,
Finnish, French, German, Italian, Norwegian, Persian,
Polish, Portuguese (Brazilian), Russian, Turkish, Spanish and
Swedish. There may be other translations of which we are
not aware.

The largest source of users however make use of DragMath
through the TinyMCE editor. This is a WYSIWYG editor
control for web browsers that enables the user to edit HTML
content in a more user friendly way. The editor control is
very flexible and is built for integration purposes. DragMath
has been plugged into this editor, and returns the LaTeX
displayed form of an expression. TinyMCE is the default
editor for the Moodle VLE. As of Moodle 2.x DragMath
is now distributed as part of the Moodle core. To use
DragMath, you are required to activate the TeX filter and
ensure that you have Java installed. So, if you have Moodle
version 2.x, you automatically have DragMath already. There
are many other systems using TinyMCE, and it is likely that
many of those which need support for mathematics will
also use DragMath through TinyMCE.

DragMath has been released under the GNU General
Public Licence. The source-code has been downloaded
8,287 times since Aug 2007 and since July 2007 the
compiled applet has been downloaded 46,508 times
from the SourceForge site. Of course, most users will
access a compiled version of the applet from another
website making the extent of DragMath use hard to
establish accurately. It is very difficult to establish how
many different projects make use of it, although the
numbers using DragMath through Moodle alone are now
substantial. The site http://moodle.org/stats/
contains statistics of Moodle usage.

Conclusions

It was clear when I suggested a drag-and-drop equation
editor as a final year computer science project that it was
interesting both intellectually and as a computer science
project, even if it looked ‘trivial’. I also had a clear need for
such software in practice, and did not have the time to
write the code myself; instead I contributed to the design
discussions. What started as a pragmatic desire for an editor,
developed through a student project into both useful

software in its own right, and in parallel for me as a modest
research interest, see [9].

One reason for the take-up is the ease with which others
can integrate DragMath into other software and modify
parts of the behaviour, e.g. the language and the output
format, without having to recompile the applet.

I am very grateful to Alex for his work on DragMath and
his continuing interest in supporting this project in his
own time. I would also like to acknowledge the help of
colleagues who have integrated DragMath into Moodle,
and translated the applet into other languages.

References

C. Babbage. On the influence of signs in mathematical
reasoning. Transactions of the Cambridge Philosophical
Society, II:325–377, 1827.

C. Babbage. On notations. Edinburgh Encyclopaedia,
15:394–9, 1830.

A. Billingsley. Input of elementary mathematics. BSc
mathematics and computer science, University of
Birmingham, 2007.

M. Brown. Some thoughts on the use of computer
symbols in mathematics. The Mathematical Gazette,
58(404):78–79, June 1974.

F. Cajori. A history of mathematical notations.
Open Court, 1928.

J. F. Nicaud, D. Bouhineau, and H. Chaachoua. Mixing
microworlds and CAS features in building computer
systems that help students learn algebra. International
Journal of Computers for Mathematical Learning,
9(2):169–211, 2004.

C. J. Sangwin. Computer Aided Assessment of
Mathematics Using STACK. In Proceedings of
ICME 12, 2012.

C. J. Sangwin and M. J. Grove. STACK: addressing the
needs of the “neglected learners”. In Proceedings of
the First WebALT Conference and Exhibition January 5-6,
Technical University of Eindhoven, Netherlands, pages
81–95. Oy WebALT Inc, University of Helsinki,
ISBN 952-99666-0-1, 2006.

C. J. Sangwin and P. Ramsden. Linear syntax for
communicating elementary mathematics. Journal of
Symbolic Computation, 42(9):902–934, 2007.

1.

2.

3.

4.

5.

6.

7.

8.

9.

The DragMath equation editor – Chris Sangwin

